SCORVEN GROUPSCORVEN GROUPSCORVEN GROUPSCORVEN GROUP
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
0
snake venom
Pseudocerastes Persicus
05/07/2019
Echis Carinatus
Echis Carinatus
05/07/2019
Naja NajaOxiana

Naja Naja Oxiana

Description

N. Oxiana is medium in length, a heavy-bodied snake with long cervical ribs capable of expansion to form a hood. Anteriorly, the body is depressed dorsoventrally, and posteriorly it is subcylindrical. This species averages about 1 m. in total length (including tail) and rarely reaches lengths over 1.5 m. The head is elliptical, depressed, and slightly distinct from the neck, with a short, rounded snout and large nostrils. The eye is medium in size with a round pupil. The dorsal scales are smooth and strongly oblique, with the outer two or three scale rows larger than the remainder. Juveniles tend to be pale, with a faded appearance. Juveniles have noticeable dark and light cross-bands of approximately equal width around the body. Adults of this species are completely light to chocolate brown or yellowish, with some specimens retaining traces of juvenile banding, especially the first few dark ventral bands. This species has no hood mark and no lateral throat spots.

Certificate of Quality

Appearance

white powder

LD50 (white mouse IP)

male: 12.8 µg/mouse female: 6.8 µg/mouse

Percent of mucus in venom

Origin

IRAN

Purity

>99%

Form

Lyophilized Powder

Packaging

In vacuum sealed glass vials, in secured parcel.

Related Links

[1-80]

  1. Choudhury, M., et al., Orphan Three-Finger Toxins Bind at Tissue Factor-Factor VIIa Interface to Inhibit Factor X Activation: Identification of Functional Site by Docking. TH Open, 2018. 2(3): p. e303-e314.
  2. Abdel-Ghani, L.M., et al., Cytotoxicity of Nubein6.8 peptide isolated from the snake venom of Naja nubiae on melanoma and ovarian carcinoma cell lines. Toxicon, 2019. 168: p. 22-31.
  3. Hew, B.E., et al., Identification of functionally important amino acid sequences in cobra venom factor using human C3/Cobra venom factor hybrid proteins. Toxicon, 2019. 167: p. 106-116.
  4. Tan, C.H., et al., Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. J Proteomics, 2019: p. 103418.
  5. Shi, Y.J., et al., Naja atra cardiotoxins enhance the protease activity of chymotrypsin. Int J Biol Macromol, 2019. 136: p. 512-520.
  6. Rozman Antolikova, N., et al., Naja ashei venom induces mitochondria-mediated apoptosis in human colorectal cancer cells. Acta Biochim Pol, 2019. 66(2): p. 207-213.
  7. Bittenbinder, M.A., et al., Differential destructive (non-clotting) fibrinogenolytic activity in Afro-Asian elapid snake venoms and the links to defensive hooding behavior. Toxicol In Vitro, 2019. 60: p. 330-335.
  8. Tongpoo, A., et al., Recurrent neurotoxic envenoming of cobra bite. Toxicon, 2019. 167: p. 180-183.
  9. Macedo, J.K.A., et al., Proteomic Analysis of Human Blister Fluids Following Envenomation by Three Snake Species in India: Differential Markers for Venom Mechanisms of Action. Toxins (Basel), 2019. 11(5).
  10. Liu, Y., et al., Cytotoxin 1 from Naja atra Cantor venom induced necroptosis of leukemia cells. Toxicon, 2019. 165: p. 110-115.
  11. Qin, Z., et al., Comparative analysis of intestinal bacteria among venom secretion and non-secrection snakes. Sci Rep, 2019. 9(1): p. 6335.
  12. Deka, A., et al., Comparative analysis of Naja kaouthia venom from North-East India and Bangladesh and its cross reactivity with Indian polyvalent antivenoms. Toxicon, 2019. 164: p. 31-43.
  13. Mana, K., et al., Incidence and treatment of snakebites in West Bengal, India. Toxicol Rep, 2019. 6: p. 239-243.
  14. Kalogeropoulos, K., et al., Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel), 2019. 11(3).
  15. Zhang, B., et al., Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins (Basel), 2019. 11(3).
  16. Zhang, F., et al., Naja atra venom peptide reduces pain by selectively blocking the voltage-gated sodium channel Nav1.8. J Biol Chem, 2019. 294(18): p. 7324-7334.
  17. Dutta, S., et al., Binding of a Naja naja venom acidic phospholipase A2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. Biochim Biophys Acta Biomembr, 2019. 1861(5): p. 958-977.
  18. Tan, C.H., et al., Distinctive Distribution of Secretory Phospholipases A(2) in the Venoms of Afro-Asian Cobras (Subgenus: Naja, Afronaja, Boulengerina and Uraeus). Toxins (Basel), 2019. 11(2).
  19. Chong, H.P., et al., Exploring the Diversity and Novelty of Toxin Genes in Naja sumatrana, the Equatorial Spitting Cobra from Malaysia through De Novo Venom-Gland Transcriptomics. Toxins (Basel), 2019. 11(2).
  20. Zainal Abidin, S.A., et al., Malaysian Cobra Venom: A Potential Source of Anti-Cancer Therapeutic Agents. Toxins (Basel), 2019. 11(2).
  21. Williams, H.F., et al., Mechanisms underpinning the permanent muscle damage induced by snake venom metalloprotease. PLoS Negl Trop Dis, 2019. 13(1): p. e0007041.
  22. Silva-de-Franca, F., et al., Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation. PLoS Negl Trop Dis, 2019. 13(1): p. e0007017.
  23. Williams, H.F., et al., Impact of Naja nigricollis Venom on the Production of Methaemoglobin. Toxins (Basel), 2018. 10(12).
  24. Chanda, A., et al., Proteomic analysis and antivenomics study of Western India Naja naja venom: Correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics, 2018.
  25. Whitaker, R., Snakebite Mitigation Project of the Madras Crocodile Bank/Centre for Herpetology, India: background and a brief summary of activities. Trans R Soc Trop Med Hyg, 2018.
  26. Bittenbinder, M.A., et al., Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins (Basel), 2018. 10(12).
  27. Lu, S., et al., Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int J Biol Macromol, 2019. 124: p. 1264-1273.
  28. Liu, C.C., et al., Development of sandwich ELISA and lateral flow strip assays for diagnosing clinically significant snakebite in Taiwan. PLoS Negl Trop Dis, 2018. 12(12): p. e0007014.
  29. Khanongnoi, J., et al., Human Monoclonal scFvs that Neutralize Fribrinogenolytic Activity of Kaouthiagin, a Zinc-Metalloproteinase in Cobra (Naja kaouthia) Venom. Toxins (Basel), 2018. 10(12).
  30. Kandiwa, E., et al., Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation-Altering Properties and Edema-Forming Effects of Zebra Snake (Naja nigricincta nigricincta) Venom. J Toxicol, 2018. 2018: p. 6940798.
  31. Dissanayake, D.S.B., et al., The Venom of Spectacled Cobra (Elapidae: Naja naja): In Vitro Study from Distinct Geographical Origins in Sri Lanka. J Toxicol, 2018. 2018: p. 7358472.
  32. Chanda, A., et al., Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: Correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Rev Proteomics, 2018. 15(11): p. 949-961.
  33. Lewinska, A., et al., Snake venoms promote stress-induced senescence in human fibroblasts. J Cell Physiol, 2019. 234(5): p. 6147-6160.
  34. de la Rosa, G., et al., Use of irradiated elapid and viperid venoms for antivenom production in small and large animals. Toxicon, 2018. 155: p. 32-37.
  35. Whiteley, G., et al., Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J Proteomics, 2019. 198: p. 186-198.
  36. O’Brien, J., et al., Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl Trop Dis, 2018. 12(10): p. e0006736.
  37. Lee, C.H., et al., Characterization of Chicken-Derived Single Chain Antibody Fragments against Venom of Naja Naja Atra. Toxins (Basel), 2018. 10(10).
  38. Hoen, S., et al., Elastic response of polycrystalline and single-crystal YBa2Cu3O7. Phys Rev B Condens Matter, 1988. 38(16): p. 11949-11951.
  39. Liu, C.C., et al., Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics, 2018. 187: p. 59-68.
  40. Sato, A. and A. Menez, External release of entropy by synchronized movements of local secondary structures drives folding of a small, disulfide-bonded protein. PLoS One, 2018. 13(6): p. e0198276.
  41. Delafontaine, M., et al., The Ex vivo Eye Irritation Test (EVEIT) model as a mean of improving venom ophthalmia understanding. Toxicon, 2018. 150: p. 253-260.
  42. Kerkkamp, H., et al., Whole snake venoms: Cytotoxic, anti-metastatic and antiangiogenic properties. Toxicon, 2018. 150: p. 39-49.
  43. Das, H.K. and P.P. Sahu, Electro-Physiology of Coupling Model and Its Impact on Naja Kaouthia Venom Treated Sciatic Nerves of Toad. IEEE Trans Neural Syst Rehabil Eng, 2018. 26(5): p. 987-992.
  44. Oliveira, P.R.S., et al., Snake venoms from Angola: Intra-specific variations and immunogenicity. Toxicon, 2018. 148: p. 85-94.
  45. de la Rosa, G., et al., Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids, 2018. 50(7): p. 885-895.
  46. Bin Asad, M.H., et al., Lethal toxic Dose (i.p LD50), total protein contents and comparative hemolytic potential of (99mTc labeled & non-labeled) Naja naja karachiensis venom. Pak J Pharm Sci, 2018. 31(2(Suppl.)): p. 685-689.
  47. Hus, K.K., et al., First Look at the Venom of Naja ashei. Molecules, 2018. 23(3).
  48. Wang, S.Z. and Z.H. Qin, Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel), 2018. 10(3).
  49. Makdisi, J.R., et al., Tumescent contravenom: murine model for prehospital treatment of Naja naja neurotoxic snake envenomation. Int J Dermatol, 2018. 57(5): p. 605-610.
  50. Handford, C., Case of venom ophthalmia following contact with Naja pallida: the red spitting cobra. J R Army Med Corps, 2018. 164(2): p. 124-126.
  51. Sala, A., et al., Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLoS One, 2018. 13(1): p. e0190778.
  52. Sivaraman, T., et al., Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom. Indian J Pharmacol, 2017. 49(4): p. 275-281.
  53. Liu, B.S., et al., Identification of Immunoreactive Peptides of Toxins to Simultaneously Assess the Neutralization Potency of Antivenoms against Neurotoxicity and Cytotoxicity of Naja atra Venom. Toxins (Basel), 2017. 10(1).
  54. Wong, K.Y., et al., Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics, 2018. 175: p. 156-173.
  55. Liu, C.C., et al., Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS Negl Trop Dis, 2017. 11(12): p. e0006138.
  56. Rajesh, K.S., et al., Neutralization of Naja naja venom induced lethality, edema and myonecrosis by ethanolic root extract of Coix lacryma-jobi. Toxicol Rep, 2017. 4: p. 637-645.
  57. Bailly-Chouriberry, L., et al., Use of split-free nano-liquid chromatography-mass spectrometry/high resolution mass spectrometry interface to improve the detection of alpha-cobratoxin in equine plasma for doping control. Drug Test Anal, 2018. 10(5): p. 880-885.
  58. Attarde, S.S. and S.V. Pandit, Cytotoxic activity of NN-32 toxin from Indian spectacled cobra venom on human breast cancer cell lines. BMC Complement Altern Med, 2017. 17(1): p. 503.
  59. Muthusamy, K., et al., Computational and in vitro insights on snake venom phospholipase A2 inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC. J Biomol Struct Dyn, 2018. 36(16): p. 4197-4208.
  60. Chen, M., et al., Broad-spectrum antiviral agents: secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Sci Rep, 2017. 7(1): p. 15931.
  61. Suvilesh, K.N., et al., Purification and characterization of an anti-hemorrhagic protein from Naja naja (Indian cobra) venom. Toxicon, 2017. 140: p. 83-93.
  62. Konshina, A.G., N.A. Krylov, and R.G. Efremov, Cardiotoxins: Functional Role of Local Conformational Changes. J Chem Inf Model, 2017. 57(11): p. 2799-2810.
  63. Shaikh, I.K., et al., Development of dot-ELISA for the detection of venoms of major Indian venomous snakes. Toxicon, 2017. 139: p. 66-73.
  64. Nguyen, T.V. and A.V. Osipov, A study of ribonuclease activity in venom of vietnam cobra. J Anim Sci Technol, 2017. 59: p. 20.
  65. Zhang, Y. and C.M. Li, The detoxifying effects of structural elements of persimmon tannin on Chinese cobra phospholipase A2 correlated with their structural disturbing effects well. J Food Drug Anal, 2017. 25(3): p. 731-740.
  66. Abdou, F., et al., Assessment of the neutralizing potency of antisera raised against native and gamma-irradiated Naja nigricollis (black-necked spitting cobra) venom in rabbits, concerning its cardiotoxic effect. Hum Exp Toxicol, 2017. 36(12): p. 1335-1344.
  67. Osipov, A.V., et al., New paradoxical three-finger toxin from the cobra Naja kaouthia venom: Isolation and characterization. Dokl Biochem Biophys, 2017. 475(1): p. 264-266.
  68. Fakhri, A., et al., Naja Naja Oxiana Venom Fraction Selectively Induces ROS-Mediated Apoptosis in Human Colorectal Tumor Cells by Directly Targeting Mitochondria. Asian Pac J Cancer Prev, 2017. 18(8): p. 2201-2208.
  69. Ratanabanangkoon, K., et al., A novel in vitro potency assay of antisera against Thai Naja kaouthia based on nicotinic acetylcholine receptor binding. Sci Rep, 2017. 7(1): p. 8545.
  70. Zhao, C., et al., Cobra neurotoxin produces central analgesic and hyperalgesic actions via adenosine A1 and A2A receptors. Mol Pain, 2017. 13: p. 1744806917720336.
  71. Dubovskii, P.V., et al., Structural and Dynamic “Portraits” of Recombinant and Native Cytotoxin I from Naja oxiana: How Close Are They? Biochemistry, 2017. 56(34): p. 4468-4477.
  72. Xiong, S., et al., Investigation of the inhibitory potential of phospholipase A2 inhibitor gamma from Sinonatrix annularis to snake envenomation. Toxicon, 2017. 137: p. 83-91.
  73. Wang, Y., et al., Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Sci Rep, 2017. 7(1): p. 5466.
  74. Choudhury, M., et al., Comparison of proteomic profiles of the venoms of two of the ‘Big Four’ snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Toxicon, 2017. 135: p. 33-42.
  75. Calderon-Celis, F., et al., Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics, 2017. 164: p. 33-42.
  76. Lu, Z., et al., Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells. Cell Death Dis, 2017. 8(5): p. e2801.
  77. Talebi Mehrdar, M., et al., Antibacterial Activity of Isolated Immunodominant Proteins of Naja Naja (Oxiana) Venom. Iran J Pharm Res, 2017. 16(1): p. 297-305.
  78. Yang, Q., et al., Photoresponsive nanocapsulation of cobra neurotoxin and enhancement of its central analgesic effects under red light. Int J Nanomedicine, 2017. 12: p. 3463-3470.
  79. Pla, D., Y. Rodriguez, and J.J. Calvete, Third Generation Antivenomics: Pushing the Limits of the In Vitro Preclinical Assessment of Antivenoms. Toxins (Basel), 2017. 9(5).
  80. Giresha, A.S., et al., Neutralization of Inflammation by Inhibiting In vitro and In vivo Secretory Phospholipase A2 by Ethanol Extract of Boerhaavia diffusa L. Pharmacognosy Res, 2017. 9(2): p. 174-181.

Venom extraction

Venom is obtained by electrical stimulation telson with standard stimulation set and cumulated in sterile glass container.

Keep and Storage

Venom is frozen and stored in chemically non-effective (in contact of glass or pure metal alloy) container with micro freezer with constant temperature and emergency alarm system.

Every thing is OK?

So, let's buy!
Share
0

Related posts

Echis Carinatus
05/07/2019

Echis Carinatus


Read more
snake venom
05/07/2019

Pseudocerastes Persicus


Read more
SnakeToxin
05/07/2019

Macrovipera Lebetina Cernovi


Read more

Dear friends!

It’s our proud, you check out our company activity collections.
Remember us we are always available!

Tel: 0049 17762 82766

Email 1: Info@scorven.de

Email 2: Marketing@scorven.de

Recent Posts

  • Hot News 3
  • Hot News 2
  • Hot News 1

Log In

Register

0