SCORVEN GROUPSCORVEN GROUPSCORVEN GROUPSCORVEN GROUP
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
0
Hottentotta Schach Toxin
Hottentotta Schach
31/05/2019
SnakeToxin
Macrovipera Lebetina Cernovi
05/07/2019
Snake Venom

Agkistrodon Caucasicus

Description

G. halys grows to a maximum total length of 59 cm, which was for a female, with an included tail length of 68 mm. The largest male on record measured 53 cm in total length, which included a tail length of 80 mm. The body build is described as moderately stout with a snout that is slightly upturned when viewed from the side. Dorsally, G. halys is grayish, pale brown, reddish, or yellowish, with large dark spots or crossbars, the borders of which are serrated. One or two lateral series of smaller dark spots are present. There is a wide dark stripe behind the eye, bordered by light stripes both above and below. The venter is whitish, speckled with gray or brown. The strongly keeled dorsal scales are arranged in 23 rows at midbody. The anal plate is entire.

Certificate of Quality

Appearance

white powder

LD50 (white mouse IP)

male: 10.8 µg/mouse female: 7.6 µg/mouse

Percent of mucus in venom

10 – 20%

Origin

IRAN

Purity

>99%

Form

Lyophilized Powder

Packaging

In vacuum sealed glass vials, in secured parcel

Related Links

[1-103]

  1. Domanski, K., et al., Cottonmouth snake bites reported to the ToxIC North American snakebite registry 2013-2017. Clin Toxicol (Phila), 2019: p. 1-5.
  2. Asadi, A., et al., Evolutionary history and postglacial colonization of an Asian pit viper (Gloydius halys caucasicus) into Transcaucasia revealed by phylogenetic and phylogeographic analyses. Sci Rep, 2019. 9(1): p. 1224.
  3. Nazari, M., A. Najafi, and M.R. Abai, Species Composition and Some Biological Features of Scorpions in Kazerun District, Southern Iran. J Arthropod Borne Dis, 2018. 12(3): p. 296-309.
  4. Telnov, D. and H. Ghahari, An annotated checklist of the Anthicidae and pediline Pyrochroidae (Insecta: Coleoptera) of Iran, with thirteen new country records. Zootaxa, 2018. 4497(4): p. 451-491.
  5. Hof, A.R. and A.M. Allen, An uncertain future for the endemic Galliformes of the Caucasus. Sci Total Environ, 2019. 651(Pt 1): p. 725-735.
  6. Gholamian-Shahabad, M.R., et al., Sandflies species composition, activity, and natural infection with Leishmania, parasite identity in lesion isolates of cutaneous leishmaniasis, central Iran. J Parasit Dis, 2018. 42(2): p. 252-258.
  7. Mirhoseini, M., et al., Distribution and Seasonal Activity of Phlebotominae Sand Flies in Yazd and Its Outskirts, Center of Iran. ScientificWorldJournal, 2017. 2017: p. 1486845.
  8. Sanaei-Zadeh, H., S.M. Marashi, and R. Dehghani, Epidemiological and clinical characteristics of scorpionism in Shiraz (2012-2016); development of a clinical severity grading for Iranian scorpion envenomation. Med J Islam Repub Iran, 2017. 31: p. 27.
  9. Bavani, M.M., et al., Spatial Distribution of Medically Important Scorpions in North West of Iran. J Arthropod Borne Dis, 2017. 11(3): p. 371-382.
  10. Amini, S., et al., New records of Iranian bark beetles (Coleoptera: Curculionidae, Scolytinae) and their host plants. Zootaxa, 2017. 4350(2): p. 396-400.
  11. Martucciello, S., et al., Steroids from Helleborus caucasicus reduce cancer cell viability inducing apoptosis and GRP78 down-regulation. Chem Biol Interact, 2018. 279: p. 43-50.
  12. Zahraei-Ramazani, A., et al., Molecular Identification of Phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: Psychodidae) in a Hyperendemic Area of Zoonotic Cutaneous Leishmaniasis in Iran. J Med Entomol, 2017. 54(6): p. 1525-1530.
  13. Diaz-Rodriguez, J., et al., Integration of molecular, bioacoustical and morphological data reveals two new cryptic species of <i>Pelodytes</i> (Anura, Pelodytidae) from the Iberian Peninsula. Zootaxa, 2017. 4243(1): p. 1-41.
  14. Steenis, J.V., et al., Revision of the West-Palaearctic species of the tribe Cerioidini (Diptera, Syrphidae). Zootaxa, 2016. 4196(2): p. zootaxa 4196 2 1.
  15. Baranets, M.S., E.N. Ponirovsky, and D.S. Kadamov, [Mosquitoes (Diptera, Psychodidae, Phlebotominae) in Central Asia: Species Composition and Spread]. Med Parazitol (Mosk), 2015(4): p. 10-8.
  16. Llanes-Acevedo, I.P., et al., DNA sequence analysis suggests that cytb-nd1 PCR-RFLP may not be applicable to sandfly species identification throughout the Mediterranean region. Parasitol Res, 2016. 115(3): p. 1287-95.
  17. Keith, D., G. Sabatinelli, and M. Uliana, Synopsis of the genus Pharaonus (Coleoptera: Scarabaeidae: Rutelinae), with descriptions of new taxa. Zootaxa, 2015. 4012(1): p. 167-80.
  18. Ali, N., et al., Distribution, species composition and relative abundances of sandflies in North Waziristan Agency, Pakistan. Med Vet Entomol, 2016. 30(1): p. 89-94.
  19. Moreno, V., et al., Molecular characterization of bot flies, Oestrus spp., (Diptera, Oestridae), from domestic and wild Bovidae hosts. Vet Parasitol, 2015. 212(3-4): p. 473-7.
  20. Fatullaeva, A.A., et al., [Additional evidence for the species composition of mosquitoes (Diptera, Psichodidae, Phlebotominae) in the visceral leishmaniasis foci of Uzbekistan]. Med Parazitol (Mosk), 2014(4): p. 48-50.
  21. Diaz-Rodriguez, J., et al., Molecular evidence for cryptic candidate species in Iberian Pelodytes (Anura, Pelodytidae). Mol Phylogenet Evol, 2015. 83: p. 224-41.
  22. Salehzadeh, A., et al., Diversity and incrimination of sandflies (Psychodidae: Phlebotominae) captured in city and suburbs of Hamadan, Hamadan province, west of Iran. Asian Pac J Trop Med, 2014. 7S1: p. S177-81.
  23. Sylla, B., et al., Isolation of a new disaccharide nucleoside from Helleborus caucasicus: structure elucidation and total synthesis of hellecaucaside A and its beta-anomer. Carbohydr Res, 2014. 398: p. 80-9.
  24. Krajewska, M., et al., Bovine tuberculosis in a wild boar (Sus scrofa) in Poland. J Wildl Dis, 2014. 50(4): p. 1001-2.
  25. Bonato, L. and A. Minelli, Chilopoda Geophilomorpha of Europe: a revised list of species, with taxonomic and nomenclatorial notes. Zootaxa, 2014. 3770: p. 1-136.
  26. Sharbatkhori, M., et al., Molecular variation in Leishmania parasites from sandflies species of a zoonotic cutaneous leishmaniasis in northeast of Iran. J Vector Borne Dis, 2014. 51(1): p. 16-21.
  27. Bordbar, A., et al., Three strains of Wolbachia pipientis and high rates of infection in Iranian sandfly species. Bull Entomol Res, 2014. 104(2): p. 195-202.
  28. Akhoundi, M., et al., Molecular characterization of leishmania infection from naturally infected sand flies caught in a focus of cutaneous leishmaniasis (eastern iran). J Arthropod Borne Dis, 2013. 7(2): p. 122-31.
  29. Alaniia, M., et al., [Study of antioxidant activity of phenolic compounds from some species of Georgian flora]. Georgian Med News, 2013(222): p. 69-72.
  30. Bakhshi, H., et al., Molecular detection of Leishmania infection in sand flies in border line of Iran-Turkmenistan: restricted and permissive vectors. Exp Parasitol, 2013. 135(2): p. 382-7.
  31. Jafari, R., et al., Molecular characterization of sandflies and Leishmania detection in main vector of zoonotic cutaneous leishmaniasis in Abarkouh district of Yazd province, Iran. Asian Pac J Trop Med, 2013. 6(10): p. 792-7.
  32. Parvizi, P., A. Bordbar, and N. Najafzadeh, Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in two sister species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishmaniasis. Mem Inst Oswaldo Cruz, 2013. 108(4): p. 414-20.
  33. Akhoundi, M., et al., Sand fly (Diptera: Psychodidae) distribution in the endemic and non-endemic foci of visceral leishmaniasis in northwestern Iran. J Vector Ecol, 2013. 38(1): p. 97-104.
  34. Shi, C.M., et al., Impact of climate changes from Middle Miocene onwards on evolutionary diversification in Eurasia: insights from the mesobuthid scorpions. Mol Ecol, 2013. 22(6): p. 1700-16.
  35. Taeger, A., The type specimens of Tenthredo Linnaeus, 1758 (Hymenoptera: Tenthredinidae) deposited in the Hungarian Natural History Museum. Zootaxa, 2013. 3626: p. 201-44.
  36. Caldara, R. and V. Fogato, Systematics of the weevil genus Mecinus Germar, 1821 (Coleoptera: Curculionidae). I. Taxonomic treatment of the species. Zootaxa, 2013. 3654: p. 1-105.
  37. Kaya, S., E.M. Korkmaz, and B. Ciplak, Psorodonotus venosus group (Orthoptera, Tettigoniidae; Tettigoniinae): geometric morphometry revealed two new species in the group. Zootaxa, 2013. 3750: p. 37-56.
  38. Ponirovskii, E.N., et al., [The species composition and epidemiological significance of mosquitoes (Diptera, Psychodidae, Phlebotominae) in the foci of visceral leishmaniasis in the Papsky District, Namangan Region, Uzbekistan]. Med Parazitol (Mosk), 2012(3): p. 34-8.
  39. Bonacci, T., et al., Cucujus tulliae sp. n. – an endemic Mediterranean saproxylic beetle from genus Cucujus Fabricius, 1775 (Coleoptera, Cucujidae), and keys for identification of adults and larvae native to Europe. Zookeys, 2012(212): p. 63-79.
  40. Rassi, Y., et al., First detection of Leishmania infantum in Phlebotomus kandelakii using molecular methods in north-eastern Islamic Republic of Iran. East Mediterr Health J, 2012. 18(4): p. 387-92.
  41. Dehghani, R. and B. Fathi, Scorpion sting in Iran: a review. Toxicon, 2012. 60(5): p. 919-33.
  42. Zhang, H., The effects of hemocoagulase on coagulation factors in an elderly patient with upper gastrointestinal hemorrhage: A case report. Curr Drug Saf, 2019.
  43. Wu, G.L., T.Y. Li, and Y.S. Fan, [Experience of Professor Fan Yongsheng in treating arthralgia with insect drugs]. Zhongguo Zhong Yao Za Zhi, 2019. 44(4): p. 845-848.
  44. Zhang, L., et al., Functional recombinant single-chain variable fragment antibody against Agkistrodon acutus venom. Exp Ther Med, 2019. 17(5): p. 3768-3774.
  45. Sandfoss, M.R. and H.B. Lillywhite, Water relations of an insular pit viper. J Exp Biol, 2019. 222(Pt 9).
  46. Haskins, D.L., R.M. Gogal, Jr., and T.D. Tuberville, Snakes as Novel Biomarkers of Mercury Contamination: A Review. Rev Environ Contam Toxicol, 2020. 249: p. 133-152.
  47. Goetz, S.M., et al., Serum-based inhibition of pitviper venom by eastern indigo snakes (Drymarchon couperi). Biol Open, 2019. 8(3).
  48. Gerardo, C.J., et al., Does This Patient Have a Severe Snake Envenomation?: The Rational Clinical Examination Systematic Review. JAMA Surg, 2019.
  49. Mueller, A. and C.M. Gienger, Comparative thermal ecology of copperheads (Agkistrodon contortrix) and cottonmouths (Agkistrodon piscivorus). J Therm Biol, 2019. 79: p. 73-80.
  50. Wang, C., et al., Agkistrodon ameliorates pain response and prevents cartilage degradation in monosodium iodoacetate-induced osteoarthritic rats by inhibiting chondrocyte hypertrophy and apoptosis. J Ethnopharmacol, 2019. 231: p. 545-554.
  51. Knight, R.B., et al., Evaluation of vasoactivity after haemotoxic snake venom administration. Toxicon, 2019. 158: p. 69-76.
  52. Dane, K. and S. Chaturvedi, Beyond plasma exchange: novel therapies for thrombotic thrombocytopenic purpura. Hematology Am Soc Hematol Educ Program, 2018. 2018(1): p. 539-547.
  53. Margres, M.J., et al., Tipping the Scales: The Migration-Selection Balance Leans toward Selection in Snake Venoms. Mol Biol Evol, 2019. 36(2): p. 271-282.
  54. Lewinska, A., et al., Snake venoms promote stress-induced senescence in human fibroblasts. J Cell Physiol, 2019. 234(5): p. 6147-6160.
  55. van den Hurk, P. and H.M.I. Kerkkamp, Phylogenetic origins for severe acetaminophen toxicity in snake species compared to other vertebrate taxa. Comp Biochem Physiol C Toxicol Pharmacol, 2019. 215: p. 18-24.
  56. Barton, D.J., R.T. Marino, and A.F. Pizon, Multimodal analgesia in crotalid snakebite envenomation: A novel use of femoral nerve block. Am J Emerg Med, 2018. 36(12): p. 2340 e1-2340 e2.
  57. Anderson, V.E., et al., Early administration of Fab antivenom resulted in faster limb recovery in copperhead snake envenomation patients. Clin Toxicol (Phila), 2019. 57(1): p. 25-30.
  58. Li, D., et al., Jinlong Capsule (JLC) inhibits proliferation and induces apoptosis in human gastric cancer cells in vivo and in vitro. Biomed Pharmacother, 2018. 107: p. 738-745.
  59. Carregari, V.C., et al., Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Sci Rep, 2018. 8(1): p. 12067.
  60. Jia, Y. and J. Villarreal, Phospholipases A2 purified from cottonmouth snake venoms display no antibacterial effect against four representative bacterial species. Toxicon, 2018. 151: p. 1-4.
  61. Asmat, A. and F. Ramzan, Venom Protein C Activators as Diagnostic Agents for Defects of Protein C System. Protein Pept Lett, 2018. 25(7): p. 643-651.
  62. Li, H., et al., Effects of hemocoagulase agkistrodon on the coagulation factors and its procoagulant activities. Drug Des Devel Ther, 2018. 12: p. 1385-1398.
  63. Mei, L., et al., Small Peptides Compound Isolated from Agkistrodon with Antiarthritic Effect in Collagen-Induced Arthritis Rats. Evid Based Complement Alternat Med, 2018. 2018: p. 8265150.
  64. Cox, R.D., et al., Misidentification of copperhead and cottonmouth snakes following snakebites(). Clin Toxicol (Phila), 2018. 56(12): p. 1195-1199.
  65. Pham, H.X. and M.E. Mullins, Safety of nonsteroidal anti-inflammatory drugs in copperhead snakebite patients. Clin Toxicol (Phila), 2018: p. 1-7.
  66. Tang, Y., et al., Agkihpin, a Distinct SVTLE from the Venom of Gloydius halys Pallas: Purification, Characterization and Structure-Activity Determination. Chem Biodivers, 2018. 15(6): p. e1800122.
  67. Linglong, X. and W. Dijiong, Prolonged Hemocoagulase Agkistrodon Halys Pallas Administration Induces Hypofibrinogenemia in Patients with Hematological Disorders: A Clinical Analysis of 11 Patients. Indian J Hematol Blood Transfus, 2018. 34(2): p. 322-327.
  68. Oliveira, A., et al., Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): Insights into the structure-function relationships of snake venom toxins. Toxicon, 2018. 146: p. 50-60.
  69. Kirkly, J.A., et al., The Alapahoochee watershed microgeographic structure and its potential influence on metal concentrations and genetic structure in the Florida cottonmouth, Agkistrodon piscivorus conanti, within the watershed. Environ Monit Assess, 2018. 190(4): p. 220.
  70. Gutierrez, J.M., Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review. Toxicon, 2018. 146: p. 138-150.
  71. Solano, G., et al., Contributions of the snake venoms of Bothrops asper, Crotalus simus and Lachesis stenophrys to the paraspecificity of the Central American polyspecific antivenom (PoliVal-ICP). Toxicon, 2018. 144: p. 1-6.
  72. Graham, S.P., K.T. Fielman, and M.T. Mendonca, Thermal performance and acclimatization of a component of snake (Agkistrodon piscivorus) innate immunity. J Exp Zool A Ecol Integr Physiol, 2017. 327(6): p. 351-357.
  73. Titus, J.K., M.K. Kay, and C.J.J. Glaser, Application of phage display for the development of a novel inhibitor of PLA2 activity in Western cottonmouth venom. J Venom Res, 2017. 8: p. 19-24.
  74. Chen, C., et al., Platelet glycoprotein receptor Ib blockade ameliorates experimental cerebral ischemia-reperfusion injury by strengthening the blood-brain barrier function and anti-thrombo-inflammatory property. Brain Behav Immun, 2018. 69: p. 255-263.
  75. Chiang, W., et al., In Response to “The Efficacy of Crotalidae Polyvalent Immune Fab (Ovine) Antivenom Versus Placebo Plus Optional Rescue Therapy on Recovery from Copperhead Snake Envenomation”. Ann Emerg Med, 2017. 70(6): p. 930-931.
  76. Lindemann, D.M., et al., Pharmacokinetics, Efficacy, and Safety of Voriconazole and Itraconazole in Healthy Cottonmouths (Agkistrodon Piscivorus) and Massasauga Rattlesnakes (Sistrurus Catenatus) with Snake Fungal Disease. J Zoo Wildl Med, 2017. 48(3): p. 757-766.
  77. Zhang, C., et al., Ticagrelor-induced life-threatening bleeding via the cyclosporine-mediated drug interaction: A case report. Medicine (Baltimore), 2017. 96(37): p. e8065.
  78. Lillywhite, H.B., Feeding begets drinking: insights from intermittent feeding in snakes. J Exp Biol, 2017. 220(Pt 19): p. 3565-3570.
  79. Xiong, S., et al., Investigation of the inhibitory potential of phospholipase A2 inhibitor gamma from Sinonatrix annularis to snake envenomation. Toxicon, 2017. 137: p. 83-91.
  80. Mong, R., V.C.H. Ng, and M.L. Tse, Safety profile of snake antivenom (use) in Hong Kong – a review of 191 cases from 2008 to 2015. Clin Toxicol (Phila), 2017. 55(10): p. 1066-1071.
  81. Jia, Y., et al., Phospholipase A2 in the venom of three cottonmouth snakes. Toxicon, 2017. 135: p. 84-92.
  82. Gerardo, C.J., et al., The Efficacy of Crotalidae Polyvalent Immune Fab (Ovine) Antivenom Versus Placebo Plus Optional Rescue Therapy on Recovery From Copperhead Snake Envenomation: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Ann Emerg Med, 2017. 70(2): p. 233-244 e3.
  83. Wright, L.V. and Y.H. Indrawirawan, Lowland copperhead (Austrelaps superbus) envenomation causing severe neuromuscular paralysis in a dog. Aust Vet J, 2017. 95(6): p. 207-210.
  84. Lu, X., et al., Hemostatic Effect of Hemocoagulase Agkistrodon on Surgical Wound in Breast Cancer Surgery. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2017. 39(2): p. 183-187.
  85. Lillywhite, H.B. and S.M. Lillywhite, Ontogenetic shifts of heart position in snakes. J Morphol, 2017. 278(8): p. 1105-1113.
  86. Sang, J.F., et al., [Effect of Agkistrodon Acutus Venom PCA on HUVEC Activity]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2017. 25(2): p. 572-576.
  87. Rizer, J., et al., Acute hypersensitivity reaction to Crotalidae polyvalent immune Fab (CroFab) as initial presentation of galactose-alpha-1,3-galactose (alpha-gal) allergy. Clin Toxicol (Phila), 2017. 55(7): p. 668-669.
  88. Luo, S.Y., et al., Anfibatide protects against rat cerebral ischemia/reperfusion injury via TLR4/JNK/caspase-3 pathway. Eur J Pharmacol, 2017. 807: p. 127-137.
  89. Kane, L.P., et al., Pharmacokinetics of nebulized and subcutaneously implanted terbinafine in cottonmouths (Agkistrodon piscivorus). J Vet Pharmacol Ther, 2017. 40(5): p. 575-579.
  90. Noda, K., N. Akiyama, and S. I, The effects of early treatment with anti-venom on length of hospital stay: Analysis of 46 cases of mamushi bites. Chudoku Kenkyu, 2017. 30(1): p. 25-30.
  91. Qiu, M., et al., The impact of hemocoagulase for improvement of coagulation and reduction of bleeding in fracture-related hip hemiarthroplasty geriatric patients: A prospective, single-blinded, randomized, controlled study. Injury, 2017. 48(4): p. 914-919.
  92. Resende, L.M., et al., Corrigendum to “Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom” [Toxicon 127 (2017) 22-36]. Toxicon, 2017. 128: p. 61.
  93. Gribbins, K.M., L.R. Freeborn, and D.M. Sever, Ultrastructure of spermatid development within the testis of the Yellow-Bellied Sea Snake, Pelamis platurus (Squamata: Elapidae). Spermatogenesis, 2016. 6(3): p. e1261666.
  94. Rodriguez-Acosta, A., et al., Biological and biochemical characterization of venom from the broad-banded copperhead (Agkistrodon contortrix laticinctus): isolation of two new dimeric disintegrins. Anim Biol Leiden Neth, 2016. 66(2): p. 173-187.
  95. Resende, L.M., et al., Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom. Toxicon, 2017. 127: p. 22-36.
  96. Bocian, A., et al., Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques. Toxins (Basel), 2016. 8(12).
  97. Schulte, J., et al., Childhood Victims of Snakebites: 2000-2013. Pediatrics, 2016. 138(5).
  98. Lam, S.K., et al., Comparison of green pit viper and Agkistrodon halys antivenom in inhibition of coagulopathy due to Trimeresurus albolabris venom: an in-vitro study using human plasma. Hong Kong Med J, 2017. 23(1): p. 13-8.
  99. Montiel-Canales, G., et al., [Evaluation of PAE and AE for identifying generalized tracks using snakes in Hidalgo, Mexico]. Rev Biol Trop, 2016. 64(4): p. 1611-24.
  100. Steuerwald, M.T., et al., Administration of CroFab Antivenom by a Helicopter Emergency Medical Service Team. Air Med J, 2016. 35(6): p. 371-373.
  101. Bao, J., et al., Effects of agkistrodon in different dosage forms on collagen-induced arthritis in rats. Chin J Integr Med, 2016. 22(12): p. 902-909.
  102. Xu, Y.Y., X.H. Ma, and S.J. Zhang, Hemocoagulase agkistrodon-induced anaphylactic shock: A case report and literature review. Int J Clin Pharmacol Ther, 2016. 54(2): p. 129-34.
  103. Larson, K.W., et al., Management of Tissue Loss After Agkistrodon Snakebite: Appropriate Use of Crotalidae-Fab Antivenin. J Trauma Nurs, 2016. 23(3): p. 169-72.

Venom extraction

Venom is obtained by electrical stimulation telson with standard stimulation set and cumulated in sterile glass container.

Keep and Storage

Venom is frozen and stored in chemically non-effective (in contact of glass or pure metal alloy) container with micro freezer with constant temperature and emergency alarm system.

Every thing is OK?

So, let's buy!
Share
1

Related posts

Echis Carinatus
05/07/2019

Echis Carinatus


Read more
Naja NajaOxiana
05/07/2019

Naja Naja Oxiana


Read more
snake venom
05/07/2019

Pseudocerastes Persicus


Read more

Dear friends!

It’s our proud, you check out our company activity collections.
Remember us we are always available!

Tel: 0049 17762 82766

Email 1: Info@scorven.de

Email 2: Marketing@scorven.de

Recent Posts

  • Hot News 3
  • Hot News 2
  • Hot News 1

Log In

Register

0