SCORVEN GROUPSCORVEN GROUPSCORVEN GROUPSCORVEN GROUP
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
  • Home
  • About Us
  • Scorpion Venoms
    • Androctonus Crassicauda
    • Odontobuthus Doriea
    • Hottentotta Saulceyi
    • Mesobuthus Eupeus
    • Hottentotta Jayakari
    • Hottentotta Schach
  • Snake Venoms
    • Naja Naja Oxiana
    • Pseudocerastes Persicus
    • Echis Carinatus
    • Macrovipera Lebetina Cernovi
    • Agkistrodon Caucasicus
  • Beauty Products
  • Contact Us
  • My account
0
Hottentotta Saulceyi Venom
Hottentotta Saulceyi
31/05/2019
Hottentotta Jayakari
31/05/2019
Mesobuthus Eupeus Venom

Mesobuthus Eupeus

Description

Size of 4 to 5 cm. the entire body is yellow to yellowish brown. The dorsal segments (tergites) of the mesosoma often have longitudinal irregular stripes that are black to dark brown. They exhibit sexual dimorphism, the adult females being generally larger than males but have a lower number of pectinal teeth (16 to 23, as opposed to 22 to 28 in males). The pedipalps have a maximum of ten diagonal rows of granules on the fixed finger and eleven on the movable finger. The pedipalp chelae (pincers) are wider than the patella (segment IV). The segment of the metasoma are thick and have eight keels (octocarinate). The telson is subglobose with a flat dorsal surface.

Certificate of Quality

Appearance

white powder

LD50 (white mouse IP)

30 µg (Albino mouse 20 gram weight)

SDS-PAGE (15% polyacryamidec Gel)

SDS

Percent of mucus in venom

10 – 25%

Origin

IRAN

Purity

>99%

Form

Lyophilized Powder

Packaging

In vacuum sealed glass vials, in secured parcel

Related Links

[1-49]

  1. Jafari, H., et al., Scolicidal activity of Mesobuthus eupeus venom against the protoscolices of Echinococcus granulosus. Arch Razi Inst, 2019. 74(2): p. 183-189.
  2. Baradaran, M., et al., First Transcriptome Analysis of Iranian Scorpion, Mesobuthus Eupeus Venom Gland. Iran J Pharm Res, 2018. 17(4): p. 1488-1502.
  3. Kuzmenkov, A.I., et al., KV1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology, 2018. 143: p. 228-238.
  4. Kuldyushev, N.A., et al., Refined structure of BeM9 reveals arginine hand, an overlooked structural motif in scorpion toxins affecting sodium channels. Proteins, 2018. 86(10): p. 1117-1122.
  5. Gao, B., et al., Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids, 2018. 50(8): p. 1025-1043.
  6. Sanaei-Zadeh, H., S.M. Marashi, and R. Dehghani, Epidemiological and clinical characteristics of scorpionism in Shiraz (2012-2016); development of a clinical severity grading for Iranian scorpion envenomation. Med J Islam Repub Iran, 2017. 31: p. 27.
  7. Khosravi, M., et al., The Effects of Isolated Fractions of Mesobuthus eupeus Scorpion Venom on Humoral Immune Response. J Arthropod Borne Dis, 2017. 11(4): p. 497-503.
  8. Bavani, M.M., et al., Spatial Distribution of Medically Important Scorpions in North West of Iran. J Arthropod Borne Dis, 2017. 11(3): p. 371-382.
  9. Sharifinia, N., et al., Fauna and Geographical Distribution of Scorpions in Ilam Province, South Western Iran. J Arthropod Borne Dis, 2017. 11(2): p. 242-248.
  10. Ozkan, O. and E.A. Yagmur, Neutralization Capacity of Monovalant Antivenom Against Existing Lethal Scorpions in the Turkish Scorpiofauna. Iran J Pharm Res, 2017. 16(2): p. 653-660.
  11. Kuldyushev, N.A., et al., Design of sodium channel ligands with defined selectivity – a case study in scorpion alpha-toxins. FEBS Lett, 2017. 591(20): p. 3414-3420.
  12. Nejati, J., et al., Scorpions and scorpionism in Iran’s central desert. Acta Trop, 2017. 166: p. 293-298.
  13. Baradaran, M., et al., A Novel Defensin-Like Peptide Associated with Two Other New Cationic Antimicrobial Peptides in Transcriptome of the Iranian Scorpion Venom. Iran Biomed J, 2017. 21(3): p. 190-6.
  14. Zhang, S., et al., Evaluating the potential of a loop-extended scorpion toxin-like peptide as a protein scaffold. Protein Eng Des Sel, 2016. 29(12): p. 607-616.
  15. Ma, H., et al., Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom. Chin J Nat Med, 2016. 14(8): p. 607-14.
  16. Wang, X., B. Gao, and S. Zhu, A single-point mutation enhances dual functionality of a scorpion toxin. Comp Biochem Physiol C Toxicol Pharmacol, 2016. 179: p. 72-8.
  17. Kuzmenkov, A.I., et al., Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY. J Biol Chem, 2015. 290(19): p. 12195-209.
  18. Saganuwan, S.A., Determination of median effective dose (ED50) of scorpion antivenom against scorpion envenomation using a newly developed formula. Animal Model Exp Med, 2018. 1(3): p. 228-234.
  19. Nazari, M., A. Najafi, and M.R. Abai, Species Composition and Some Biological Features of Scorpions in Kazerun District, Southern Iran. J Arthropod Borne Dis, 2018. 12(3): p. 296-309.
  20. Uzair, B., et al., Scorpion Venom Peptides as a Potential Source for Human Drug Candidates. Protein Pept Lett, 2018. 25(7): p. 702-708.
  21. Khanbashi, S., et al., Assessment of immunogenic characteristics of Hemiscorpius lepturus venom and its cross-reactivity with venoms from Androctonus crassicauda and Mesobuthus eupeus. J Immunotoxicol, 2015. 12(3): p. 217-22.
  22. Eskandari, G., et al., Production of Recombinant Alpha Neurotoxin of Scorpion Venom Mesobuthus eupeus and Analysis of its Immunogenicity. Iran Red Crescent Med J, 2014. 16(1): p. e9666.
  23. Khoobdel, M., et al., Purification of the Immunogenic Fractions and Determination of Toxicity in Mesobuthus eupeus (Scorpionida: Buthidae) Venom. J Arthropod Borne Dis, 2013. 7(2): p. 139-46.
  24. Khoobdel, M., et al., Diagnosis of Mesobuthus eupeus envenomation by skin test: reverse passive Arthus reaction. Toxicon, 2014. 77: p. 133-40.
  25. Khoobdel, M., et al., The production of monovalent and anti-idiotype antivenom against Mesobuthus eupeus (Scorpionida: Buthidae) venom in rabbits. Toxicon, 2013. 76: p. 44-9.
  26. Zhu, L., et al., Two recombinant alpha-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels. Biochimie, 2013. 95(9): p. 1732-40.
  27. Farajzadeh-Sheikh, A., A. Jolodar, and S. Ghaemmaghami, Sequence characterization of cDNA sequence of encoding of an antimicrobial Peptide with no disulfide bridge from the Iranian mesobuthus eupeus venomous glands. Iran Red Crescent Med J, 2013. 15(1): p. 36-41.
  28. Shi, C.M., et al., Impact of climate changes from Middle Miocene onwards on evolutionary diversification in Eurasia: insights from the mesobuthid scorpions. Mol Ecol, 2013. 22(6): p. 1700-16.
  29. Gao, B. and S. Zhu, Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation. Comp Biochem Physiol B Biochem Mol Biol, 2012. 163(2): p. 238-45.
  30. Dehghani, R. and B. Fathi, Scorpion sting in Iran: a review. Toxicon, 2012. 60(5): p. 919-33.
  31. Baradaran, M., et al., Sequence analysis of lysozyme C from the scorpion mesobuthus eupeus venom glands using semi-nested rt-PCR. Iran Red Crescent Med J, 2011. 13(10): p. 719-25.
  32. Khodadadi, A., et al., An in vitro comparative study upon the toxic properties of the venoms from Hemiscorpius lepturus, Androctonus crassicauda and Mesobuthus eupeus scorpions. Toxicon, 2012. 60(3): p. 385-90.
  33. Zayerzadeh, E., et al., Amelioration of cardio-respiratory perturbations following Mesobuthus eupeus envenomation in anesthetized rabbits with commercial polyvalent F(ab’)2 antivenom. Toxicon, 2012. 59(2): p. 249-56.
  34. Zhu, S., et al., Evolutionary diversification of Mesobuthus alpha-scorpion toxins affecting sodium channels. Mol Cell Proteomics, 2012. 11(1): p. M111 012054.
  35. Gao, B., L. Zhu, and S. Zhu, A naturally-occurring carboxyl-terminally truncated alpha-scorpion toxin is a blocker of sodium channels. Biochem Biophys Res Commun, 2011. 411(4): p. 673-8.
  36. Cesaretli, Y. and O. Ozkan, Scorpion stings in Turkey: epidemiological and clinical aspects between the years 1995 and 2004. Rev Inst Med Trop Sao Paulo, 2010. 52(4): p. 215-20.
  37. Gao, B., et al., Molecular divergence of two orthologous scorpion toxins affecting potassium channels. Comp Biochem Physiol A Mol Integr Physiol, 2011. 159(3): p. 313-21.
  38. Jalali, A., et al., Serum TNF-alpha levels reflect the clinical severity of envenomation following a Hemiscorpius lepturus sting. Eur Cytokine Netw, 2011. 22(1): p. 5-10.
  39. Zhu, S., et al., Molecular diversity and functional evolution of scorpion potassium channel toxins. Mol Cell Proteomics, 2011. 10(2): p. M110 002832.
  40. Gao, B., et al., A potent potassium channel blocker from Mesobuthus eupeus scorpion venom. Biochimie, 2010. 92(12): p. 1847-53.
  41. Gao, B., et al., Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 2010. 92(4): p. 350-9.
  42. Zhu, S., et al., MeuTXKbeta1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochim Biophys Acta, 2010. 1804(4): p. 872-83.
  43. Shahbazzadeh, D., et al., Epidemiological and clinical survey of scorpionism in Khuzestan province, Iran (2003). Toxicon, 2009. 53(4): p. 454-9.
  44. Dehghani, R., et al., Introducing Compsobuthus matthiesseni (Birula, 1905) scorpion as one of the major stinging scorpions in Khuzestan, Iran. Toxicon, 2009. 54(3): p. 272-5.
  45. Gao, B., et al., Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. FASEB J, 2009. 23(4): p. 1230-45.
  46. Ji, Y.J., et al., Eight polymorphic microsatellite markers developed in the Chinese scorpion, Mesobuthus martensii (Scorpiones: Buthidae). Mol Ecol Resour, 2008. 8(6): p. 1454-6.
  47. Ozkan, O. and A. Carhan, The neutralizing capacity of Androctonus crassicauda antivenom against Mesobuthus eupeus scorpion venom. Toxicon, 2008. 52(2): p. 375-9.
  48. Sadeghian, H., Transient ophthalmoplegia following envenomation by the scorpion Mesobuthus eupeus. Neurology, 2003. 60(2): p. 346-7.
  49. Orlov, B.N., N.V. Korneva, and E.B. Romanova, [Rheological properties of the blood and erythrocyte suspension after exposure to zootoxins]. Nauchnye Doki Vyss Shkoly Biol Nauki, 1987(4): p. 51-5.

Venom extraction

Venom is obtained by electrical stimulation telson with standard stimulation set and cumulated in sterile glass container.

Keep and Storage

Venom is frozen and stored in chemically non-effective (in contact of glass or pure metal alloy) container with micro freezer with constant temperature and emergency alarm system.

Every thing is OK?

So, let's buy!
Share
1

Related posts

Hottentotta Schach Toxin
31/05/2019

Hottentotta Schach


Read more
31/05/2019

Hottentotta Jayakari


Read more
Hottentotta Saulceyi Venom
31/05/2019

Hottentotta Saulceyi


Read more

Dear friends!

It’s our proud, you check out our company activity collections.
Remember us we are always available!

Tel: 0049 17762 82766

Email 1: Info@scorven.de

Email 2: Marketing@scorven.de

Recent Posts

  • Hot News 3
  • Hot News 2
  • Hot News 1

Log In

Register

0